Показаны сообщения с ярлыком Nature. Показать все сообщения
Показаны сообщения с ярлыком Nature. Показать все сообщения

вторник, 14 июля 2020 г.

Samsung опубликовал данные об открытии нового материала для производства полупроводников


Учёные из Высшего технологического института Samsung (Samsung Advanced Institute of Technology, SAIT) в сотрудничестве с Национальным институтом науки и технологии Ульсана (UNIST) и Кембриджским университетом рассказали об открытии нового материала под названием аморфный нитрид бора (a-BN). Исследование, опубликованное в авторитетном научном журнале Nature, способно ускорить появление полупроводников следующего поколения.

2D материалы – ключ к преодолению проблем масштабируемости

SAIT занимается исследованием и разработкой двумерных (2D) материалов – кристаллических веществ, состоящих из одного слоя атомов. В частности, специалисты института работали над изучением и разработкой графена и добились революционных результатов в этой области – создали новый графеновый транзистор, а также новый метод производства монокристаллических пластин большой площади из чешуйчатого графена. Помимо этого, учёные SAIT заняты ускорением коммерциализации материала.
«Чтобы улучшить совместимость графена с полупроводниковыми процессами на основе кремния, выращивание плёнок графена на полупроводниковых подложках должно осуществляться при температуре ниже 400°C, – рассказал Хён Чжин Шин, руководитель проекта по разработке графена и главный исследователь SAIT. – Мы также постоянно работаем над расширением сферы применения графена, не ограничиваясь полупроводниками».

Трансформированный 2D материал – аморфный нитрид бора

Недавно открытый материал под названием аморфный нитрид бора (a-BN) состоит из атомов бора и азота с аморфной структурой молекулы. Несмотря на то, что аморфный нитрид бора получают из белого графена, который включает атомы бора и азота, расположенных в гексагональной структуре, благодаря своей молекулярной структуре новый материал обладает уникальными отличиями от белого графена.
Аморфный нитрид бора имеет лучшую в своём классе сверхнизкую диэлектрическую проницаемость 1,78 с сильными электромеханическими свойствами и может использоваться в качестве межсоединительного изоляционного материала для сокращения электрических помех. Также было продемонстрировано, что материал в чешуйчатой форме можно выращивать при низкой температуре, всего 400°C. В связи с этим ожидается, что аморфный нитрид бора будет широко применяться в полупроводниках, таких как решения DRAM и NAND, и, особенно, в памяти следующего поколения для крупномасштабных серверов.

*********************************************************************************

2012: графеновый барристор, триодное устройство с барьером Шоттки, управляемым затвором (SAIT, опубликовано в Science)

2014: чешуйчатый рост пластины монокристаллического монослоя графена на многоразовом водородно-терминированном германии (SAIT и Университет Сонгюнгван, опубликовано в Science)

2017: Реализация непрерывного монослоя углерода Захариасен (SAIT и Университет Сонгюнгван, опубликовано в журнале Science Advances)

2020: сверхнизкая диэлектрическая проницаемость аморфного нитрида бора (SAIT, UNIST и Кембриджский университет, опубликовано в журнале Nature)

Samsung Leads Semiconductor Paradigm Shift with New Material Discovery

Researchers at the Samsung Advanced Institute of Technology (SAIT) have unveiled the discovery of a new material, called amorphous boron nitride (a-BN), in collaboration with Ulsan National Institute of Science and Technology (UNIST) and the University of Cambridge. Published in the journal Nature, the study has the potential to accelerate the advent of the next generation of semiconductors.

2D Materials – The Key to Overcoming Scalability Challenges

Recently, SAIT has been working on the research and development of two-dimensional (2D) materials – crystalline materials with a single layer of atoms. Specifically, the institute has been working on the research and development of graphene, and has achieved groundbreaking research outcomes in this area such as the development of a new graphene transistor as well as a novel method of producing large-area, single-crystal wafer-scale graphene. In addition to researching and developing graphene, SAIT has been working to accelerate the material’s commercialization.
“To enhance the compatibility of graphene with silicon-based semiconductor processes, wafer-scale graphene growth on semiconductor substrates should be implemented at a temperature lower than 400°C.” said Hyeon-Jin Shin, a graphene project leader and Principal Researcher at SAIT. “We are also continuously working to expand the applications of graphene beyond semiconductors.”

2D Material Transformed – Amorphous Boron Nitride

The newly discovered material, called amorphous boron nitride (a-BN), consists of boron and nitrogen atoms with an amorphous molecule structure. While amorphous boron nitride is derived from white graphene, which includes boron and nitrogen atoms arranged in a hexagonal structure, the molecular structure of a-BN in fact makes it uniquely distinctive from white graphene.
Amorphous boron nitride has a best-in-class ultra-low dielectric constant of 1.78 with strong electrical and mechanical properties, and can be used as an interconnect isolation material to minimize electrical interference. It was also demonstrated that the material can be grown on a wafer scale at a low temperature of just 400°C. Thus, amorphous boron nitride is expected to be widely applied to semiconductors such as DRAM and NAND solutions, and especially in next generation memory solutions for large-scale servers.
“Recently, interest in 2D materials and the new materials derived from them has been increasing. However, there are still many challenges in applying the materials to existing semiconductor processes.” said Seongjun Park, Vice President and Head of Inorganic Material Lab, SAIT. “We will continue to develop new materials to lead the semiconductor paradigm shift.”

*********************************************************************************

2012: Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier (SAIT, published in Science)

2014: Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium (SAIT and Sungkyunkwan University, published in Science)

2017: Realization of continuous Zachariasen carbon monolayer (SAIT and Sungkyunkwan University, published in Science Advances)

2020: Ultra-low dielectric constant amorphous boron nitride (SAIT, UNIST and University of Cambridge, published in Nature)

воскресенье, 22 декабря 2019 г.

Исследование сотрудников Samsung о квантовых точках опубликовано в ведущем научном журнале ‘Nature’



В своей новой работе двое исследователей и научных сотрудников Samsung Electronics впервые в отрасли продемонстрировали возможность использования квантово-точечных светодиодов (QLED) в коммерческих целях. Учёные представили полупроводниковые нанокристаллы, называемые квантовыми точками, в которых отсутствуют токсичные тяжёлые металлы и которые могут выступать в качестве высокоэффективных источников света. Эти наноструктуры могут использоваться в дисплеях, солнечных элементах и светодиодах. Исследование было опубликовано в журнале Nature, наиболее авторитетном в мире общенаучном журнале.
Авторами этого революционного проекта являются доктор Юньджу Чжан (Eunjoo Jang), научный сотрудник Samsung, и доктор Ю-Хо Вон (Yu-Ho Won), ведущий научный сотрудник Института передовых технологий Samsung (Samsung Advanced Institute of Technology).
Крошечные полупроводниковые кристаллы – так называемые квантовые точки (quantum dots или сокращённо QD) – являются на сегодняшний день одним из величайших достижений в области нанотехнологий. Однако для того, чтобы полностью реализовать потенциал этой технологии, необходимо решить две технические проблемы. Во-первых, на смену квантовым точкам на основе кадмия должны прийти квантовые точки, отличающиеся высокой эффективностью светоизлучения, но при этом не содержащие токсичных тяжёлых металлов. И, во-вторых, в целях снижения энергопотребления люминофоры квантовых точек (вещества, способные излучать свет) в телевизорах необходимо заменить квантово-точечными светодиодами. В исследовании научных сотрудников Samsung рассказывается о квантовых точках, которые позволяют решить обе эти проблемы.
Благодаря улучшению структуры квантовых точек, команде удалось значительно повысить квантовую эффективность, а также увеличить срок службы элемента QLED. В статье учёные отметили, что их метод улучшил квантовую эффективность светодиода на 21,4% и увеличил время жизни QLED светодиодов до миллиона часов.
«Уникальные технологии и материалы Samsung, из которых изготавливается ядро, помогли нам сосредоточиться на изучении возможностей квантовых точек для создания дисплеев следующего поколения, – отметила д-р Чань. – В дальнейшем мы намерены расширить разработку экологически чистых дисплеев, используя квантовые точки в новых структурах».
«Это исследование позволило получать квантовые точки, отличающиеся высокой квантовой эффективностью, независимо от толщины оболочки, и обеспечило нам более полное понимание технологий изготовления квантовых точек», – добавила д-р Вон.

Samsung Fellows’ Study on the Potential Commercialization of QLEDs Published in Leading Science Journal, ‘Nature’

A duo of researchers and fellows at Samsung Electronics have, in an industry-first, proved the potential of Quantum dot light-emitting diodes (QLEDs) for commercial purposes in a new study. On November 27 (London), this study on the commercialization of QLEDs was published by Nature, the world’s leading multidisciplinary science journal.
The authors of this groundbreaking project are Dr. Eunjoo Jang, Samsung Fellow, and Dr. Yu-Ho Won, a Principal Researcher at the Samsung Advanced Institute of Technology. By improving the structure of Quantum Dots, the team managed to hugely improve quantum efficiency, as well as extend the lifetime of the QLED element. The team found, at the conclusion of their study, that their method had improved quantum efficiency by 21.4% and increased the QLED lifetime to a million hours.
“Thanks to Samsung’s distinctive core material technology, we were able to work towards exploring the potentials of next-generation displays,” noted Dr. Jang. “Going forward, we are looking to expand the range of development of ecofriendly displays by adopting Quantum Dots in new structures.”
“This study has enabled the production of Quantum Dots with high efficiency regardless of shell thickness by providing a better understanding of the mechanism that produces Quantum Dots,” added Dr. Won.
In 2015, Samsung launched its Cadmium-free (Cd-free) Quantum Dot TV and continues to lead the development of next generation eco-friendly displays, having obtained over 170 patents on element structure to this end.